\(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx\) [313]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 98 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\frac {(A b-a B) \text {arctanh}(\sin (c+d x))}{b^2 d}-\frac {2 a (A b-a B) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b^2 \sqrt {a+b} d}+\frac {B \tan (c+d x)}{b d} \]

[Out]

(A*b-B*a)*arctanh(sin(d*x+c))/b^2/d-2*a*(A*b-B*a)*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/b^2/d/(a
-b)^(1/2)/(a+b)^(1/2)+B*tan(d*x+c)/b/d

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {4095, 12, 3874, 3855, 3916, 2738, 214} \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\frac {(A b-a B) \text {arctanh}(\sin (c+d x))}{b^2 d}-\frac {2 a (A b-a B) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b^2 d \sqrt {a-b} \sqrt {a+b}}+\frac {B \tan (c+d x)}{b d} \]

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

((A*b - a*B)*ArcTanh[Sin[c + d*x]])/(b^2*d) - (2*a*(A*b - a*B)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a +
 b]])/(Sqrt[a - b]*b^2*Sqrt[a + b]*d) + (B*Tan[c + d*x])/(b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3874

Int[csc[(e_.) + (f_.)*(x_)]^2/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[Csc[e + f*x],
 x], x] - Dist[a/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]

Rule 3916

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a/b)*Si
n[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4095

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)),
 Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Fr
eeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {B \tan (c+d x)}{b d}+\frac {\int \frac {(A b-a B) \sec ^2(c+d x)}{a+b \sec (c+d x)} \, dx}{b} \\ & = \frac {B \tan (c+d x)}{b d}+\frac {(A b-a B) \int \frac {\sec ^2(c+d x)}{a+b \sec (c+d x)} \, dx}{b} \\ & = \frac {B \tan (c+d x)}{b d}+\frac {(A b-a B) \int \sec (c+d x) \, dx}{b^2}-\frac {(a (A b-a B)) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{b^2} \\ & = \frac {(A b-a B) \text {arctanh}(\sin (c+d x))}{b^2 d}+\frac {B \tan (c+d x)}{b d}-\frac {(a (A b-a B)) \int \frac {1}{1+\frac {a \cos (c+d x)}{b}} \, dx}{b^3} \\ & = \frac {(A b-a B) \text {arctanh}(\sin (c+d x))}{b^2 d}+\frac {B \tan (c+d x)}{b d}-\frac {(2 a (A b-a B)) \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}+\left (1-\frac {a}{b}\right ) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^3 d} \\ & = \frac {(A b-a B) \text {arctanh}(\sin (c+d x))}{b^2 d}-\frac {2 a (A b-a B) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b^2 \sqrt {a+b} d}+\frac {B \tan (c+d x)}{b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.94 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.33 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\frac {-\frac {2 a (-A b+a B) \text {arctanh}\left (\frac {(-a+b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}-(A b-a B) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+b B \tan (c+d x)}{b^2 d} \]

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

((-2*a*(-(A*b) + a*B)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] - (A*b - a*B)*(Log
[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + b*B*Tan[c + d*x])/(b^2*d)

Maple [A] (verified)

Time = 0.88 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.47

method result size
derivativedivides \(\frac {-\frac {B}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (A b -B a \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{b^{2}}-\frac {2 a \left (A b -B a \right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {B}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-A b +B a \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{b^{2}}}{d}\) \(144\)
default \(\frac {-\frac {B}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (A b -B a \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{b^{2}}-\frac {2 a \left (A b -B a \right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {B}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-A b +B a \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{b^{2}}}{d}\) \(144\)
risch \(\frac {2 i B}{d b \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A}{b d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B a}{b^{2} d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A}{b d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B a}{b^{2} d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-b \sqrt {a^{2}-b^{2}}}{\sqrt {a^{2}-b^{2}}\, a}\right ) A}{\sqrt {a^{2}-b^{2}}\, d b}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-b \sqrt {a^{2}-b^{2}}}{\sqrt {a^{2}-b^{2}}\, a}\right ) B}{\sqrt {a^{2}-b^{2}}\, d \,b^{2}}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+b \sqrt {a^{2}-b^{2}}}{\sqrt {a^{2}-b^{2}}\, a}\right ) A}{\sqrt {a^{2}-b^{2}}\, d b}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+b \sqrt {a^{2}-b^{2}}}{\sqrt {a^{2}-b^{2}}\, a}\right ) B}{\sqrt {a^{2}-b^{2}}\, d \,b^{2}}\) \(411\)

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(-B/b/(tan(1/2*d*x+1/2*c)+1)+(A*b-B*a)/b^2*ln(tan(1/2*d*x+1/2*c)+1)-2*a*(A*b-B*a)/b^2/((a-b)*(a+b))^(1/2)*
arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2))-B/b/(tan(1/2*d*x+1/2*c)-1)+1/b^2*(-A*b+B*a)*ln(tan(1/2*d
*x+1/2*c)-1))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 208 vs. \(2 (90) = 180\).

Time = 0.37 (sec) , antiderivative size = 472, normalized size of antiderivative = 4.82 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\left [-\frac {{\left (B a^{2} - A a b\right )} \sqrt {a^{2} - b^{2}} \cos \left (d x + c\right ) \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) + {\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (B a^{2} b - B b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{2} b^{2} - b^{4}\right )} d \cos \left (d x + c\right )}, \frac {2 \, {\left (B a^{2} - A a b\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right ) - {\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (B a^{2} b - B b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{2} b^{2} - b^{4}\right )} d \cos \left (d x + c\right )}\right ] \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

[-1/2*((B*a^2 - A*a*b)*sqrt(a^2 - b^2)*cos(d*x + c)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 - 2
*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b
^2)) + (B*a^3 - A*a^2*b - B*a*b^2 + A*b^3)*cos(d*x + c)*log(sin(d*x + c) + 1) - (B*a^3 - A*a^2*b - B*a*b^2 + A
*b^3)*cos(d*x + c)*log(-sin(d*x + c) + 1) - 2*(B*a^2*b - B*b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d*cos(d*x + c))
, 1/2*(2*(B*a^2 - A*a*b)*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x +
 c)))*cos(d*x + c) - (B*a^3 - A*a^2*b - B*a*b^2 + A*b^3)*cos(d*x + c)*log(sin(d*x + c) + 1) + (B*a^3 - A*a^2*b
 - B*a*b^2 + A*b^3)*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*(B*a^2*b - B*b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d
*cos(d*x + c))]

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{a + b \sec {\left (c + d x \right )}}\, dx \]

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)

[Out]

Integral((A + B*sec(c + d*x))*sec(c + d*x)**2/(a + b*sec(c + d*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more de

Giac [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.80 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=-\frac {\frac {{\left (B a - A b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{b^{2}} - \frac {{\left (B a - A b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{b^{2}} + \frac {2 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} b} - \frac {2 \, {\left (B a^{2} - A a b\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{\sqrt {-a^{2} + b^{2}} b^{2}}}{d} \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

-((B*a - A*b)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/b^2 - (B*a - A*b)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/b^2 + 2*
B*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*b) - 2*(B*a^2 - A*a*b)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*
sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/(sqrt(-a^2 + b^
2)*b^2))/d

Mupad [B] (verification not implemented)

Time = 15.30 (sec) , antiderivative size = 719, normalized size of antiderivative = 7.34 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\frac {2\,B\,a\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,\left (a^2-b^2\right )}-\frac {2\,A\,b\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,\left (a^2-b^2\right )}-\frac {B\,b\,\mathrm {tan}\left (c+d\,x\right )}{d\,\left (a^2-b^2\right )}-\frac {B\,a^2\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,{\left (a^2-b^2\right )}^{3/2}}+\frac {2\,A\,a^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b\,d\,\left (a^2-b^2\right )}-\frac {2\,B\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^2\,d\,\left (a^2-b^2\right )}-\frac {A\,a^3\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b\,d\,{\left (a^2-b^2\right )}^{3/2}}+\frac {B\,a^4\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^2\,d\,{\left (a^2-b^2\right )}^{3/2}}+\frac {A\,a\,b\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,{\left (a^2-b^2\right )}^{3/2}}+\frac {B\,a^2\,\mathrm {tan}\left (c+d\,x\right )}{b\,d\,\left (a^2-b^2\right )}-\frac {B\,a^2\,\ln \left (\frac {b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\sqrt {\left (a+b\right )\,\left (a-b\right )}}{b^2\,d\,\left (a^2-b^2\right )}+\frac {A\,a\,\ln \left (\frac {b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\sqrt {\left (a+b\right )\,\left (a-b\right )}}{b\,d\,\left (a^2-b^2\right )} \]

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)^2*(a + b/cos(c + d*x))),x)

[Out]

(2*B*a*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(d*(a^2 - b^2)) - (2*A*b*atanh(sin(c/2 + (d*x)/2)/cos(c/2
 + (d*x)/2)))/(d*(a^2 - b^2)) - (B*b*tan(c + d*x))/(d*(a^2 - b^2)) - (B*a^2*log((a*sin(c/2 + (d*x)/2) - b*sin(
c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2))/cos(c/2 + (d*x)/2)))/(d*(a^2 - b^2)^(3/2)) + (2*A*a^2*a
tanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(b*d*(a^2 - b^2)) - (2*B*a^3*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (
d*x)/2)))/(b^2*d*(a^2 - b^2)) - (A*a^3*log((a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(
a^2 - b^2)^(1/2))/cos(c/2 + (d*x)/2)))/(b*d*(a^2 - b^2)^(3/2)) + (B*a^4*log((a*sin(c/2 + (d*x)/2) - b*sin(c/2
+ (d*x)/2) + cos(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2))/cos(c/2 + (d*x)/2)))/(b^2*d*(a^2 - b^2)^(3/2)) + (A*a*b*log
((a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2))/cos(c/2 + (d*x)/2)))/(d*
(a^2 - b^2)^(3/2)) + (B*a^2*tan(c + d*x))/(b*d*(a^2 - b^2)) - (B*a^2*log((b*sin(c/2 + (d*x)/2) - a*sin(c/2 + (
d*x)/2) + cos(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2))/cos(c/2 + (d*x)/2))*((a + b)*(a - b))^(1/2))/(b^2*d*(a^2 - b^2
)) + (A*a*log((b*sin(c/2 + (d*x)/2) - a*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2))/cos(c/2 + (
d*x)/2))*((a + b)*(a - b))^(1/2))/(b*d*(a^2 - b^2))